Utility aware offloading for mobile-edge computing
نویسندگان
چکیده
منابع مشابه
UAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design
With the emergence of diverse mobile applications (such as augmented reality), the quality of experience of mobile users is greatly limited by their computation capacity and finite battery lifetime. Mobile edge computing (MEC) and wireless power transfer are promising to address this issue. However, these two techniques are susceptible to propagation delay and loss. Motivated by the chance of s...
متن کاملSocial-aware hybrid mobile offloading
Mobile offloading is a promising technique to aid the constrained resources of a mobile device. By offloading a computational task, a device can save energy and increase the performance of the mobile applications. Unfortunately, in existing offloading systems, the opportunistic moments to offload a task are often sporadic and short-lived. We overcome this problem by proposing a social-aware hyb...
متن کاملEvidence-aware Mobile Computational Offloading
Computational offloading can improve user experience of mobile apps through improved responsiveness and reduced energy footprint. A fundamental challenge in offloading is to distinguish situations where offloading is beneficial from those where it is counterproductive. Currently, offloading decisions are predominantly based on profiling performed on individual devices. While significant gains h...
متن کاملJoint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks
Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobil...
متن کاملComputation Rate Maximization for Wireless Powered Mobile-Edge Computing with Binary Computation Offloading
Finite battery lifetime and low computing capability of size-constrained wireless devices (WDs) have been longstanding performance limitations of many low-power wireless networks, e.g., wireless sensor networks (WSNs) and Internet of Things (IoT). The recent development of radio frequency (RF) based wireless power transfer (WPT) and mobile edge computing (MEC) technologies provide promising sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsinghua Science and Technology
سال: 2021
ISSN: 1007-0214
DOI: 10.26599/tst.2019.9010062